Projects leaded by:

Albert Guisasola

Associate professor

I would like wastewaters to become a source of energy and nutrients for a more sustainable future

Enhanced Biological Phosphorus Removal (EBPR) is considered as the most economical and environmentally sustainable alternative to prevent eutrophication from phosphorus discharges. Most of the reported WWTP configurations for simultaneous C/N/P removal have an aerobic zone before the settler which may result in some nitrate presence in the external recycle and consequently, in the anaerobic zone. This presence is one of the most reported causes of EBPR failure in real WWTP and, despite its significance, the processes involved have not been fully understood yet.

Current legislation for WWTP establishes stricter removal of organic matter and nutrients, especially nitrogen and phosphorus. Hence, new WWTPs must be designed and other already existing must be retrofitted to achieve the required discharge limits. Mathematical models allow a correct description of the processes observed in the WWTP and hence are a great help for these tasks. For instance, the IWA ASM2d is able to describe the behavior of the observed biological removal of COD, N and P in a common WWTP.

Wastewater treatment by Sequenced Batch Reactor (SBR) is a very versatile technology. Reaction and settling processes are carried out in the same reactor, allowing a highly configurable and adaptable wastewater treatment system. Our research group has been working since year 2000 with SBR configurations for removal of organic matter, nitrogen and phosphorus. We have 15 years of expertise in SBR configurations for Enhanced Biological Phosphorus Removal (EBPR). Classic Ana/Aer configuration for P-removal and novel Ana/Anox/Aer or Ana/Anox cycles have been widely tested in different projects.

Wastewater treatment is nowadays moving into resource recovery from wastewaters. Hence, wastewaters should not only be considered as a waste to be treated through an energy-consuming process, but a resource containing energy and nutrients to be recovered.

DESDÉMONA: DESarrollo de una DEpuradora urbana autosuficiente energéticamente Mediante la eliminación autOtrófica de Nitrógeno en la línea principal de Aguas y la recuperación de fósforo (Development of an energetically self-sufficient urban wastewater treatment plant through autotrophic nitrogen removal in the mainstream and phosphorus recovery). (CTQ2014-60495-R). (01/01/2015-31/12/2017). Juan A. Baeza Labat y Julián Carrera Muyo.  Ministerio de Economía y Competividad. (200 860 €).

At last! The SMART-Plant project starts and GENOCOV has a strong participation in this project!

The TRITON network welcomes you to its new website officially launched on April 29, 2016.

Albert Guisasola was present in the WWTMOD2016 conference held in Annecy, a specialised conference on innovative models for wastewater treatment processes.

Page 1 of 2
Welcome 200GBP Bonus at Bet365 here.